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Econometrica, Vol. 63, No. 5 (September, 1995), 1133-1159

CONSISTENT SPECIFICATION TESTING VIA
NONPARAMETRIC SERIES REGRESSION

BY YoNGMIAO HONG AND HALBERT WHITE!

This paper proposes two consistent one-sided specification tests for parametric regres-
sion models, one based on the sample covariance between the residual from the paramet-
ric model and the discrepancy between the parametric and nonparametric fitted values;
the other based on the difference in sums of squared residuals between the parametric
and nonparametric models. We estimate the nonparametric model by series regression.
The new test statistics converge in distribution to a unit normal under correct specifica-
tion and grow to infinity faster than the parametric rate (n~!/2) under misspecification,
while avoiding weighting, sample splitting, and non-nested testing procedures used else-
where in the literature. Asymptotically, our tests can be viewed as a test of the joint
hypothesis that the true parameters of a series regression model are zero, where the
dependent variable is the residual from the parametric model, and the series terms are
functions of the explanatory variables, chosen so as to support nonparametric estimation
of a conditional expectation. We specifically consider Fourier series and regression
splines, and present a Monte Carlo study of the finite sample performance of the new
tests in comparison to consistent tests of Bierens (1990), Eubank and Spiegelman (1990),
Jayasuriya (1990), Wooldridge (1992), and Yatchew (1992); the results show the new tests
have good power, performing quite well in some situations. We suggest a joint Bonferroni
procedure that combines a new test with those of Bierens and Wooldridge to capture the
best features of the three approaches.

KEYWORDS: Asymptotic normality for generalized quadratic forms, consistent testing,
Fourier series, specification testing, regression splines.

1. INTRODUCTION

NoT LONG AFTER HAUSMAN’s (1978) landmark work on specification testing,
Holly (1982) pointed out that Hausman’s test fails to have unit power asymptoti-
cally against a range of misspecifications of potential concern in the regression
context. Beginning with Bierens (1982), numerous authors have devoted atten-
tion to this problem by constructing consistent (asymptotic unit power) tests for
misspecification. Particularly relevant is work of Bierens (1990), Eubank and
Spiegelman (1990), Gozalo (1993), Lee (1988), Wooldridge (1992), and Yatchew
(1992).

In this paper we continue this effort by proposing two new consistent
one-sided specification tests for parametric regression models, one based on the
sample covariance between the residual from the parametric model and the
discrepancy between the parametric and nonparametric fitted values, and the
other based on the difference in sums of squared residuals between the
parametric and nonparametric models. Under correct specification, these two
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1134 YONGMIAO HONG AND HALBERT WHITE

statistics vanish faster than the parametric (n!/?) rate, so a standard n!/?nor-
malization leads to degenerate test statistics. With appropriate standardization,
our test statistics converge in distribution to a unit normal under correct
specification and grow to infinity faster than the parametric rate under misspeci-
fication, while avoiding weighting, sample-splitting, and non-nested testing pro-
cedures previously used to handle the degeneracy. We estimate the nonparamet-
ric model by series regressions, specifically Fourier series and regression splines.
Asymptotically, our tests can be viewed as a test of the joint hypothesis that the
“true parameters” of a series regression model are zero, where the dependent
variable is the residual from the parametric model, and the series terms are
functions of the explanatory variables, chosen so as to support nonparametric
estimation of a conditional expectation. We present a Monte Carlo study
comparing the finite sample performance of the new tests to tests of Bierens
(1990), Eubank and Spiegelman (1990), Jayasuriya (1990), Wooldridge (1992),
and Yatchew (1992); the results show that the new tests have good power,
performing quite well in some situations. We suggest a joint Bonferroni proce-
dure that combines our tests with those of Bierens and Wooldridge to capture
the best features of the three approaches.

2. HEURISTICS

Let {Z,=(X],Y) € R*!}°_| be a sequence of iid. random vectors with
E|Y,| < «. Then there exists a measurable function 6, such that 6,(X,) = E(Y,| X,)
a.s. A standard procedure to approximate 6, is to specify a parametric regres-
sion model, with typical element f(-, @), @ €4, where A is a subset of a finite
dimensional Euclidean space. We are interested in testing whether the model is
correctly specified for 6,, as embodied by the null hypothesis

H,:Pl[f(X,,a,)=6,(X)]=1 forsome a,<A.
The global alternative hypothesis is
H,: P[f(X,,a) #6,(X,)]>0 forall a€A.

Our concern here is consistent specification testing for H, against H,, i.e.
testing procedures that will reject H, with asymptotic unit power whenever H,,
is false.

Let &, denote an estimator consistent for «, under H,; for example, &,
could be the nonlinear least squares estimator, solving

n
. _ 2
ming e ,n” " XY, — f(X,, )}
=1
We denote the fitted value f;,z f(X,,&,) and the residual &, =Y, — fo A
standard approach to specification testing is to regress &,, on certain functions
of the conditioning variables X, to see if these additional regressors have any
explanatory power. Under H,, they should have no such power; a joint F test
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CONSISTENT SPECIFICATION TESTING 1135

(asymptotically x?) can be conducted to check this. If these additional regres-
sors do exhibit statistically significant explanatory power, one has evidence of
misspecification. However, such an F test will miss alternatives orthogonal to
these additional regressors and is thus not consistent against H,.

We are motivated by the fact that in the presence of misspecification, the
function of the conditioning variables most highly correlated with the regression
error ¢, =Y, — f(X,, a*) is the specification error v, = §,(X,) — f(X,, a*), where

* is the probability limit of &,. Because E{v,&}=E{6,(X)—f(X, a®)}* =0 if
and only if H, holds, a consistent test against H, can be based on the sample
covariance

n
-t Z V0 8y

where 7, 0 (XxX) - f,,,, and 6, is an appropriate nonparametric_estimator of
0,. Varlous nonparametric estimators can be used. For example, 0 can be the
ordmary least squares series estimator, solving

n
min,c o 1~ Y (Y, - 0(x,)Y’,

t=1

with

Pa
0(x) = ) Bjy(x), B;€Rand y: R > R},

6,={6:R>R
j=1

where {¢;} is a sequence of basis functions, and p, is the dimension of 6,
chosen to grow at an appropriate rate with the sample size n. For concreteness,
we focus our attention on use of Fourier series, Gallant’s (1981) flexible Fourier
form (FFF), Eubank and Speckman’s (1990) polynomial-trigonometric series,
and regression splines. )

The challenge raised by considering 7, is that for the estimators 6, of
interest to us, the usual standardization by n!/? is inappropriate: n'/2#m,
vanishes in probability under H,, a type of degeneracy. To avoid this degener-
acy, Wooldridge (1992), who also con51ders tests based on 1, requires that the
nonparametric model delivering 6, be incapable of nesting the parametric
model, thereby inducing sufficiently slow convergence for 0 to 6,. Heuristically,
under H,, m, can be decomposed into two dominant conﬂicting effects: a
variance effect and a bias effect. For each sample size n, the variance diverges
as p, increases, while the bias converges to zero as p, increases. The non-nested
approach of Wooldridge (1992) uses the bias to determine the limit distribution
by controlling the variance so as to be negligible. This requires a slow growth of
p,, and excludes the possibility of nesting the parametric model in &,. Otherwise,
the variance will dominate the bias, leading to overrejection of H,,.

A central contribution of the present work is to demonstrate that exploiting
rather than avoiding the rapid convergence of i, to zero under H, leads to
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1136 YONGMIAO HONG AND HALBERT WHITE

statistics that diverge more rapidly under H,, with the consequent possibility of
obtaining tests with better power. Our approach is to use the variance to
determine the limit distribution by controlling the bias so as to be negligible.
This is always possible by letting p, grow quickly or by nesting the parametric
model in 6,. Consequently, we can use straightforward choices for 6, without
having to worry about their relationship to the parametric model.

Although our approach can be applied in the presence of heteroskedastic
regression errors (see Theorem A.3 in the Appendix), we focus on testing H,
under homoskedasticity (i.e. E(¢?|X,) = g,> a.s.) in order to keep our presenta-

o

tion succinct. Specifically, we prove that M, % N(0,1) under H,, where

Q1)  M,=(h,/8>~p,)/2p)",

where G2 is a variance estimator such as n~'Y7_,&7%. The form taken by M,
can be understood heuristically by considering that n#:,/4,> behaves asymptoti-
cally like a szn statistic. Standardization toward normality involves subtracting
the mean p, and dividing by the standard deviation (2p,)'/%. As p, — «, the
standardized quantity becomes more nearly normal. (Our proofs, however, do
not rely on this heuristic, as it is a bit too simplistic.)
_ To get some idea of the behavior of M, under H,, consider the case in which
6, is obtained using Gallant’s (1981) FFF. In this case a permissible choice is
P, = In(n). (See Theorem 3.2 below.) Because 1, tends to a positive constant
under H,, M, behaves approximately like Cn/(In(n))/%, where C is some
constant. In contrast, Wooldridge’s statistic behaves approximately like C'n'/?,
for a different constant C’. Thus, M, diverges under H, at a rate nearly the
square of that of Wooldridge’s statistic.

Our second test is closely related to those of Lee (1988) and Yatchew (1992),
who consider basing specification testing on

n n
= -1 A2 _ -1 52
m,=n Z ne — 1 Z nt»
t=1 t=1

where #,,=Y,—6,(X,) is the residual from the nonparametric estimation.
Under H,, m, converges to zero, while it will tend to a positive limit under H,,
as the first term will include the specification error. Like #1,, n'/?*m, also
vanishes in probability. Lee (1988) reweights 77 to avoid this degeneracy. Such a
weighting device is sensitive to heteroskedasticity, as the test may reject H,
under heteroskedasticity even when H, is true. Alternatively, Yatchew (1992)
proposes splitting the sample into two independent subsets, with the first subset
used to estimate the parametric model and the second subset to estimate the
nonparametric model. This approach is also used by Whang and Andrews (1993,
Section 5) in testing semiparametric models. As pointed out by Wooldridge
(1992), sample-splitting is rather costly.

Because we view degeneracy as a virtue rather than a vice, we obtain a viable
test statistic by finding the proper standardization for #,, instead of by modify-
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CONSISTENT SPECIFICATION TESTING 1137

ing 1, so that the familiar n'/?

test statistic

-normalization is appropriate. We consider the

2.2) = (wh, /62 —p,)/C2p)"?

and show that under H, we have M, — M, =op(1). That is, M, and M, are
asymptotically equlvalent In addltlon to poss1ble power improvements associ-
ated with faster divergence of M under H,, we also avoid the drawbacks
induced by weighting and sample- spllttmg The statistic M is simple to compute
because the sums of squared residuals are available in any standard regression
package.

Another approach closely related to ours is taken by Eubank and Spiegelman
(1990), who consider specification tests based on an orthogonal series regression
using &,, as the dependent variable. The result is a nonparametric estimator of
E(glX, ) the idea is that this should be the zero function under H,. Eubank and
Spiegelman’s statistic can be viewed as a joint F test using the coefﬁcients on all
the p, included terms in the series regression. To obtain their results, Eubank
and Spiegelman assume a linear model with a fixed single regressor and
normally distributed errors &,. Jayasuriya (1990) generalizes Eubank and
Spiegelman’s results by dropping the normality assumption and permitting the
linear model to be a fixed order polynomial (but still with a single fixed
regressor). The tests we propose can be proven to be asymptotically equivalent
to a test based on series regression with &, as the dependent variable. Our
results extend and complement those of Eubank and Spiegelman, and Jayasuriya
(ES&J) by permitting nonorthogonal series, nonlinear parametric models, and
random multiple regressors.

de Jong and Bierens (1991) use an approach similar to ES&J. Their test can
be viewed as the heteroskedasticity-robust version of ES&J’s test. Although
they allow nonorthogonal series and test nonlinear parametric models, de Jong
and Bierens’ approach is specific to the Fourier series. Also, they show that their
statistic grows at a rate of at least (n/p3/?) under H,, but do not deliver the
exact rate (n/p)/ 2). In contrast, our approach permits such nonparametric
techniques such as kernel methods and smoothing splines (see White and Hong
(1993) for use of kernel methods). We are also able to deliver the exact growth
rate of n/p'/? for our test statistic under H,. Our treatment of heteroskedastic
errors (Theorem A.3, Appendix) is also different from theirs.

3. SPECIFICATION TESTING WITH FOURIER SERIES AND SPLINES

We work throughout with the following data generating process (DGP).

ASSUMPTION A.1: For each n € N the stochastic process {Z, = (X],Y;)’ € R4,
t=1,2,...,n}, d €N, is independent and identically distributed with E(Y,*) < c,
The distribution . of X, has a continuous and positive density function p on X,
where X, is the compact support of X,.
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1138 YONGMIAO HONG AND HALBERT WHITE

The bounded support assumption facilitates use of Fourier series and splines.
Unbounded support could be handled with appropriate choice of series (e.g. the
Hermite polynomials). With Fourier series, we need to rescale X; to either
X=[0,27) or X=[»,27— v} for some small »> 0. The condition on u is
restrictive, but is not uncommon in nonparametric estimation using Fourier
series methods (e.g. Andrews (1991, Section 4), Gallant and Souza (1991), and
Wooldridge (1992, Example 3.1)). It implies that the Lebesgue measure is
absolutely continuous with respect to w, which permits application of Edmunds
and Moscatelli’s (1977) results on Fourier series.

ASSUMPTION A.2: Put ,=Y,— E(Y,|X)). (a) 0 <E(&}|X,) =0 a.s.; (b) 0<
E(e*)<wand 0<sup, .y E(s!|X,=x)<c™! <o,

The homoskedasticity assumption is a convenient but not vital condition. It
greatly simplifies our test statistic. We treat the heteroskedastic case in Theorem
A.3 of the Appendix. The moment condition on ¢, helps ensure the asymptotic
normality of our statistics.

Given E(Y,?) <, there exists a measurable function 6, such that 6,(X,)=
E(Y,|X,) as. A parametric model for 6, forms the basis of our null hypothesis.

ASSUMPTION A.3: (a) Let A be a subset of RY, q€N. For each n €N the
function f,: X; XA — R is such that for each a € A, f,(-, a) is measurable, and
f.(X,,*) is continuous a.s. on A, with f>(X,,*) <D(X,), where D,(X,) is inte-
grable uniformly in n; (b) for each n, f,(X,,-) is twice continuously differentiable
a.s. on A with |Vf(X,, I* and |V*f(X,, )|l dominated by D (X,).

The dependence of f, on n will be used to generate local alternatives. Our
next assumption specifies the behavior of the parametric estimator &,.

ASSUMPTION A.4: {&,} is a sequence of random q-vectors such that there exists a
nonstochastic sequence {a* € int A} such that n'/*(&, — a¥) = O,(1).

It is not necessary to be more specific about the asymptotic behavior of &, as
it will have no impact on the limit distribution of our test statistics. In other
words, we can estimate a, and proceed as if it were known in forming the test
statistics. This greatly simplifies calculation of our test statistics. Such estimators
as nonlinear least squares, gen¢ralized method of moment or adaptive efficient
weighted least squares (e.g., White and Stinchcombe (1991)) estimators satisfy
Assumption A.4.

To state our theorems, we define a class of local alternatives

H,,: f,(X,, ay) = ,(X)) + (p,/*/n'/*)g(X)),

where g is square integrable on X,. The null hypothesis H, occurs if g =0. As
in Gallant and Jorgenson (1979) and Gallant and White (1988), we let the model
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CONSISTENT SPECIFICATION TESTING 1139

approach the DGP rather than vice versa. This leads to a much simpler analysis
and delivers conclusions identical to those reached by fixing the model and
moving the DGP appropriately.

A key consideration in constructing our tests is the number of series terms p,.
To gain insight into what determines the admissible rates for p,, we decompose
m, under H, as follows:

n n
i, = | £ e 20| £ e
=1 =1

n

+ 2 {6} (X)) - 6,(X)}e, + O, (1),

t=1
where ¢, = (Y(X)),...,¥,(X,))" is a p, X1 vector, ¥, =(4,,...,¥,,)" is an
n X p, matrix, and 0* can be viewed as solving min, .o E{Y, — 6(X, )}2. The
first term is a variance effect, growing as p, — o; the second term is a bias
effect, vanishing as p, — « sufficiently fast. We use the first term to determine
the limit distribution by controlling the second term to be of smaller order. For
this we need to control 6, so that p(O,,*, 6,) vanishes sufficiently fast, where
p(6,,6,) =[[x{6,(x) — 192(x)}2 (dx)]'/? is an L, norm. This can be achieved by
lettmg p, grow quickly or by nesting the parametric model in 6,. We note that
m, can also be decomposed similarly, although the bias term has a different
expression.

A key condition for asymptotic normality of the first term (after proper

standardization and recentering) is

sup, ., < (Wi (B g, } B 0.

(See Theorem A.1 in the Appendix.) Since sup;sup, c, Inp}(x)l < o given our
choices of {z[/,} specified below, a sufficient condition for this is p,/ /\mm{‘lf’ll’} -
0. This restricts the growth of p,, especially when A, {E(¥,¥,/n)} is not
bounded below. (We ensure this condition by relating A {¥,¥,/n} to
Al ECEJW, /n)} using Gallant and Souza’s (1991, Theorem 4) uniform strong
law for A, (¥,¥,/n}.) Therefore, one must choose p, properly so that the first
term becomes dominant and asymptotically normal. One of our objectives is to
obtain an explicit rate for p, that implies asymptotic normality of our test
statistics under H,.

We first consider nonparametric estimators based on the trigonometric series

on X, =X (=[0,27]9):

L I,
3.1 0,={6:X->RIOX) =us+ X Z {uyj cos (jkix) + v; sin (jk; x}

i=1j

Pn
= Z lellj(X) s
j=1

where I,,J, €N,uj,u;; and v; €R, k;e K, ={k;: 1,...,1} is an elemen-
tary multi-index, a d x 1 vector of 1ntegers (for detalls of the construction
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1140 YONGMIAO HONG AND HALBERT WHITE

of k;, see Gallant (1981)), (By,...,B,) =g Buy---5Buy) Buy= (s,
Viis-+-» Uiy > ¥y ), and the sequence {¢;(x)} represents the constant function and
the trigonometric functions cos ( ]k’x) and sin (jk;x) written in an order corre-
sponding to the B; defined above. The number of series terms is p, =1+ 21,J,
= K¢, where K, is the order of the Fourier series in (3.1).

Flrst suppose that 6, is a periodic function defined on X that is continuously
differentiable up to order reN on a subset containing X. Edmunds and
Moscatelli (1977, p. 15) show that there exists a sequence {6, € ,} for 6, as in
(3.1) such that

p(6,6,) =O0(K,;")=0(p;"/9).
On the other hand, A, {E(¥,¥,/n)} is bounded below given that the density p

min
of X, is bounded away from zero on X. Applying Gallant and Souza’s (1991,
Theorem 4) uniform strong law for A (¥, ¥,/n}, we can ensure that
AW, ¥, /n} is also bounded away from zero from below. This permits a
relatively fast rate for p,.

In stating our specification testing results, we let
n
“1 % a2 A2 _
Z t OT O _(n —Pn Z nnt’
i=1

where £, =Y, - f;:t’ Ty = Y, — én(Xt)’ fnt = f(X,, &,), and én =
argming n~'Li_{Y, - 6(X,)}* for some appropriate 6,.

THEOREM 3.1: Suppose Assumptions A.1-A.4 hold and 8, is a periodic (in every
coordinate) function defined on X =1[0,27)" that is continuously differentiable up
to orderr € N on X, where 0 < r < . Define M,, and M,, as in (2.1) and (2.2), and
6, as in (3.1). Suppose that p /n — 0, p,,’*d/n“ — o, where 4r > 5d. Then (i)
under H,,, M, — M, 5 0 and

M, 5N, and M, SN,

where &= E{g*(X)}/(20,*)'/?; (ii) under H, and for any sequence {C,}, C, =
oln/p,’®),

P[M,>C,]>1 and P[M,>C,|~1.

The rate p2/n — 0 helps ensure the asymptotic normality for M, and M
When X, is nonrandom, a faster rate for p, can be obtained. The slower rates
here are due to imposing the strong law on A {¥,¥,} of Gallant and Souza
(1991, Theorem 4). The rate p?"*?/n?? -, 4r > 5d, ensures that the bias
p(0F, 6,) vanishes sufficiently fast.

Theorem 3.1 shows that consistent tests based on 2, and 1, can be obtained
without using weighting, sample-splitting and non-nested testing procedures.
Besides avoiding the features associated with these approaches, a benefit of our
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CONSISTENT SPECIFICATION TESTING 1141

approach is that it delivers test statistics diverging under H, at a rate of n/p./?,
faster than the parametric rate n'/2. (A parametric test statistic that has a null
unit normal distribution typically diverges at n!/? under the alternative.) A cost
for this is that our tests can only detect local alternatives of O(p!'/*/n!/?),
slightly slower than n~'/% due to p, — «. However, it can be shown that this
rate is still faster than the local alternatives of Lee (1988), Yatchew (1992), and
Wooldridge (1992) under standard regularity conditions. In addition, our admis-
sible rates for p, are faster than those permitted by Wooldridge (1992) and
Yatchew (1992). This suggests that our test may have superior power properties.
We note that both our tests are one-sided, because asymptotically, negative
values of our test statistics can occur only under H,. Under H, our test
statistics always tend to a positive increasing number.

Of course, the periodicity of 6, is quite a restrictive assumption. Relaxing this
will slow the convergence rate of the trigonometric series on X, due to the
Gibb’s phenomenon (boundary effects). For example, when p is uniform on
[0,27], the trigonometric series gives p(8,6,)=O0(p;'/?) for 6,(x)=a,x,
x€[0,27]. Such a slow rate might make it difficult to have the bias negligible
while maintaining asymptotic normality of our tests.

The boundary problem can be avoided and the same convergence rate
maintained if we use Gallant’s FFF series defined on X =[v,27 — v]¢ for some
small »> 0:

d i
3.2) 0,={0:X>R 9(x)=uy+ L bx;+ Y Y ;XX

i=1 i=1j=1

I

Pn
+ {uij cos(jkix) + v;; sin(jk;x)} = Y By(x)},
i=1j=1 j=1

3
3

where (By,..., B, ) = (g, Boy Buays-+ > Bay)s Bioy=(D1s-+5D45C115C1p5e 05 Caads
Biyi=1,...,J,, is as in (3.1), and the sequence {;(x)} now includes a constant,
x;, X;x;, and cos (jk;x) and sin (jk;x) written in an order corresponding to the B,.
A key difference of 0, in (3.2) from 6, in (3.1) is that 6, in (3.2) is defined on
X =[»,27m— v]¢, which does not include the boundary. As pointed out by
Gallant and Souza (1991), inclusion of x; and x;x; helps improve finite sample
performance and provides a means to test economic hypotheses. The same
convergence rate is still obtained if only trigonometric series are included in
3.2).

If 6, is continuously differentiable up to order r on a subset containing X,
then there exists a periodic function defined on X =[0,27]¢ that is continuously
differentiable up to r order on a subset containing X and coincides with 6, on
X. As pointed out by Gallant (1981), Edmunds and Moscatelli’s (1977) results
can be applied to show that there is a sequence {6 € 6,} such that the same
convergence rate is obtained as in the periodic case. A problem arises here
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because Amm{E('I’"I' /n)} is not bounded below for the FFF series on X. (The
same is true if @, in (3.2) does not include x; and x,x;) Gallant and Souza
(1991, Section 5) show that for the FFF series on X Amid ECBY, /n)} =

o(p,; ¢+ %) for every s €N and every &> 0. Thus, it appears that A, {¥.'¥, /n}
vanishes rapidly. This restricts the growth of p,. Given such a slow growth of p,,
this also restricts the class of 6, that permits quick reduction of the bias

P( on* ’ 00).

THEOREM 3.2: Suppose Assumptions A.2—-A.4 hold and that 0, is continuously
differentiable of order » on a subset containing X =[v,27 — v]d for some small
v> 0. Define M, and M,, as in (2.1) and (2.2), and @, as in (3.2). Suppose p, is
such that a(p, /")ln(p /d) < B In(n) for some 0 < B<1/2 and some mcreaszng
functiona: R, > R, with lim, _,, a(p)/*) = . Then (i) under H,,, M, -M,50
and

M, 5N(5,1) and M, N(5,1);
(ii) under H, and for any sequence {C,}, C, = o(n/p}/?),
PIM,>C,1-1 and P[M,>C,]-1.

We thus relax the periodicity assumption of 6, at the cost of increasing
smoothness and slowing the rate for p,. As discussed in Gallant and Souza
(1991, Section 5), a(p)/“)In(p}/?) < B In(n) implies that ny/p, — © for any
v>0, so p, can only grow at a rate slower than any fractional power of n. For
example, if we take a(pl/?)=pIn(n)/In(pl/?), then p, <In(n). Because
under H, our statistics diverge at a rate of n/p,/?, it follows that the slower p,
is, the faster our statistics grow asymptotically. With p, = In(n), our statistics
grow at almost the square of the parametric rate (n'/?). Of course, the slow rate
for p, may adversely affect the finite sample performance of our tests when the
sample size is not sufficiently large.

To obtain a faster rate for p,, an alternative to ensure that the bias vanishes
under H, is to nest the parametric model in the nonparametric specification.
While this approach is applicable to nonlinear parametric models, we focus for
simplicity on linear models. We consider the FFF series on the cube X:

3.3) 6, is as defined in (3.2) with X = [0, 27 ] replacing X = [v,27 — »]°.

Now A, { E(¥,/¥, /n)} of the FFF series on X vanishes only at a polynomial rate.
Direct calculation shows that if the density p is bounded below, then
Amid EQBIE, /n)} = O(p,3/?). (The rate O(p,'/?) appearing in Gallant and
Souza (1991) is a typo.) Hence, a faster rate for p, is obtainable. In fact, if we
choose

(3.4) 0O, is as defined in (3.3) with ¢;; =0forall i,j=1,...,d,
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i.e. a combination of the trigonometric series with linear terms x; only, then an
even faster rate for p, can be obtained because for @, in (3.4), A, {E(¥,¥, /n)}
=0(p;1/%). We give a formal result as follows.

THEOREM 3.3: Suppose Assumptions A.1-A.2 hold and E(X, X]) is nonsingular.
Letf(X,, a)=Xa+(pl/*/n'/*)g(X,) for a € int A, where A is a subset of RY,
g €N, and g is square integrable with E{X,g(x)}=0. Let @&, =
argmin, . ,n 'Y (Y,— X a)*. Define M, and M, as in (2.1) and (2.2), and
either (a) @, is as in (3.3) with p, —o(n"/3(d+2’) or (b) O, is as in (3.4) with

—o(n"/(3d+2)) (i) Suppose 0,(X,)=X,a, a.s. for some a,€int A. Then

M M 50, and
M, > N(8,1) and M,— N(8,1);

(i) suppose 6, is square integrable on X with respect to y. Then under H, and for
any nonstochastic sequence {C,}, C, = o(n/p)/?),

P[M,>C,]>1 and P[M,>C,] -1

For both @, as in (3.3) and (3.4), admissible rates for p, are faster than those
permitted by 6, in (3.2). This approach also applies to testing fixed order
polynomial models by extending 6, in (3.3) to include the null polynomial
model. One can expect that the rates for p, will be adversely affected by the
order of polynomial model.

Both (3.3) and (3.4) belong to Eubank and Speckman’s (1990) polynomial-trig-
onometric series. As pointed out by Eubank and Speckman, this series fits better
than the pure trigonometric series on X because the (low order) polynomials
alleviate the boundary effects. Since ES & I’s tests can be shown to be asymptoti-
cally equivalent to our tests when the series used for our tests does not include
the null linear model (Hong and White (1991, Theorem 2.6)), we also expect
that the tests of Theorem 3.3 may have better power than ES&J’s tests. This is
investigated in our simulation.

Although @), as in (3.4) permits a faster rate for p, than @), as in (3.3), this
does not necessarily imply that (3.4) will give better power in finite samples,
because under H,, 6, as in (3.3) may fit §, better. By Eubank and Speckman
(1990, Theorem 4.1), when 6, is twice continuously differentiable, ®, as in (3.3)
could fit 6, better asymptotically than @, as in 3.4 in terms of mean squared
error if the optimal p, is chosen. We compare these two series in the simula-
tion.

Finally, we turn to regression splines. For notational simplicity, we consider
only the single regressor case, with X, =[0,1]. Let A ={s;}{; with 0=s, <
<s,+1=1Dbe a partition of X, into g subintervals

I=1[s;,8;.:1), j=1,...,q—1 and I =[s,,s5,.1]
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Let  be the mesh size and s € N. Then the space of polynomial splines of order
s with simple knots sy,...,s, can be defined as

0(s,q,4)
={6: X, >R 6(x) =p;(x) for x € [;, where p;(x) is a sth order
polynomial such that p;(x) is C*~? at knot s;, j=1,...,4}.
The dimension of @(s,q,,A,)is p,=s+gq,. Let{g;(x)}, j=1,..., p,, be a basis
spanning O(s, g,,A,). Then O(s,q,,A,) can be written as

pn
0(x) = ¥ B(x),4:X, >R, B ER}.

j=1

(3.5 0(s,q,,A,)={6:X, >R

It is well known (e.g., Schumaker (1981, Theorem 6.42)) that for any 6, that is
continuously differentiable up to order r on a subset containing X, there exists
a sequence {6 € O(s,p,,A,)} such that if r<s, p(6},6,)=0(p,"). Thus,
pirt! /n* — o suffices to ensure that the bias effect vanishes quickly under H,,,.
When r>s and 6, is not a polynomial of order s or less, p(6,,0,) =0(p,*),
due to the “saturation effect” of the polynomial splines. In this case, p,**!/n?
- o suffices.

A convenient choice for {¢;} is the normalized sth order B-spline {N;}
associated with knots s;,...,s;,  that satisfy the so-called partition of unity

property, i.e. forall s>1and j=1,..., p,,

j
Y Ni(x)=1 forall s;<x<s;,,.

i=j+1-s

From this we have 0 <N’(x) <1 for all x €X; and all j. For more detailed
discussion of N/(x), see e.g. Schumaker (1981, Ch. 4).

Put Nj, =(N{(X)),...,N;(X))). Then A (EN;N;,) is not bounded below.
In the case of equally spaced knots with spacing h,=1/p, =h, and s given, it
can be shown that n~ !X E(N! N?) is a block-diagonal p, X p, symmetric
matrix with A_; (ENS.NS) =O(p,'). Again, this restricts the growth of p,.

THEOREM 3.4: Suppose Assumptions A1-A.4 hold and 6, is continuously
differentiable up to order r € N on a subset containing X, =[0,1]. Define M, and
M, as in (2.1) and (2.2) and 6, = 6,(s,q,,A,) as in (3.5) with h,=1/p, and
{4} ={N}’}, the normalized sth order B-spline. Suppose either (a) 3 <r<s,
pirtl/m2 o0, p>/n—0 or (b) r>s23, p¥*l/n?> >, p2/n—0. Then (i)
under H,,, M, — M, % 0, and

an’

M, 5N(5,1) and M, N(5,1);
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(il) under H, and for any sequence {C,}, C, = o(n/p}/?),

PIM,>C,)>1 and P[M,>C,]-1.

For unequal spacing, this result still holds if the spacing is appropriately
chosen.

4. MONTE CARLO EVIDENCE

We compare the finite sample performance of our tests to consistent tests of
Bierens (1990), ES&J, Wooldridge (1992), and Yatchew (1992) using Monte
Carlo methods. Each test statistic is asymptotically unit normal under H,, and
except for Bierens’ test, all are one-sided. We examine both size and power by
testing correct specification for E(Y,|X,) of a linear model against a number of
alternatives.

Four DGP’s are produced using the Gauss 386 random number generator:

DGP1: Y,=1+X,,+X,,+t¢=X,a,+ ¢,

DGP2: Y,=X/a,+01(V, — 7))V, —m) +¢,,
DGP3: Y,=X/a,+Xa,exp{-001(Xa,) "} +&,
DGP4: Y,=(X'a,) "’ +e,

where X, =V, +V,,)/2, X,,=(V,+V,,)/2, V,, V,,, and V,, are i.i.d. U[0, 2],
and ¢, is i.i.d. N(0, 0?) with 0> =1 or 4. A linear model f(X,, @) =X|a = «,
+ a; X;, + a, X,, is correctly specified for E(Y,|X,) under DGP 1 and misspeci-
fied under DGP’s 2—-4. DGP 2 originates from the alternative used by Bierens
(1990), except that V;, V;, and V,, are drawn from i.i.d. U[0,27] instead of i.i.d.
N(0,1). DGP 3 is similar to the alternative used by Eubank and Spiegelman
(1990); and DGP 4 is one of the alternatives used by Wooldridge (1992).

Bierens’ test involves choosing an increasing number of values of a nuisance
parameter 7 and a penalty term yn?, where y> 0, 0 < p < 1. We draw 7 from a
uniform distribution on [1, 5%, choose (n/10) — 1 for the number of 7’s, and use
two penalty rules: (y, p) =(0.25,0.5) and (0.25,0.25).

Two nonparametric series are used for our tests of Theorem 3.3: a quadratic-
trigonometric (QT) series with p, =[n""®In(n)], and a linear-trigonometric
(LT) series with p, =[1n%?* In(n)], where [a] denotes the integer closest to the
real number a. These rates, given d = 2, satisfy the conditions of Theorem 3.3.
Since both series include a linear model and @, is estimated by OLS, M, and
M, are numerically identical, as is easily verified. Therefore, we need not
distinguish them. The above two series with their rates are also applied to
Yatchew’s test with equal sample-splitting. For our tests, we use §7=
(n—p,)"'T7_ |2 to estimate g, Use of 62 =n"1L"_ &2 gives similar results,
with slightly less power. (See Hong and White (1991).) For Yatchew’s test, we
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use &,, to form an estimator for var(g?). Use of ), to form an estimator for
var(£?) leads to strong overrejection.

For our multivariate version of ES&J’s tests, a pure trigonometric series
without the constant is used to satisfy the appropriate conditions. For compari-
son with our tests, we also choose p, = [1n%" In(n)] and [7%%* In(n)] for ES&J’s
tests and use numerically identical estimators for o2

The QT or LT series estimator is prohibited in Wooldridge’s non-nested test.
Like Wooldridge, we use a trigonometric series with a constant. We use two
rates: p, =[In(n)] and p, =5,7,9 for n = 100,300,500 respectively. The latter is
used by Wooldridge.

We use the following notations: NEW1 and NEW2 denote our tests with the
QT and LT series estimators respectively; BT1 and BT2 denote Bierens’ tests
with (y, p) =(0.25,0.5) and (0.25,0.25) respectively; ESJ1 and ESJ2 denote
ES&J’s test with p, = [#%" In(n)] and [1n°?* In (n)] respectively; WT1 and WT2
denote Wooldridge’s test with p, =[In(n)] and p, =5,7,9 for n = 100, 300, 500,
respectively; and finally, YT1 and YT2 denote Yatchew’s tests with the QT and
LT series estimators respectively.

All the tests are based on the same seeds and 1000 replications, with a
different seed for each n. We use both the asymptotic critical value (ACV) and
the empirical critical value (ECV) at the 5% level. The ECV’s are generated
using 5000 replications, and are reported in Table I. In all cases, the ECV’s of
our tests and those of ES&J are less than 1.65, the 5% ACV. This differs from
the finding of ES & J, who report an ECV larger than 1.65 for the classical linear
model with a single fixed regressor and n = 100. We first examine size. Table II
shows rejection rates using both the ACV and ECV of all test statistics under
DGP 1. In all cases, our tests are conservative, and so are ES & J’s tests. BT1 has
reasonable size, but BT2 has a tendency toward overrejection. This warns
against choosing too small a penalty for Bierens’ test. WT1 and YT1 exhibit
some overrejection; WT2 and YT2 exhibit strong overrejection, i.e., the faster p,
grows, the stronger the overrejection. Therefore, both Wooldridge and Yatchew’s
tests exhibit potential “overfit” problems when p, grows too fast. In contrast,
our tests are still conservative even if p, grows faster than the rates permitted
by Theorem 3.3 (not reported here). When o,> increases, all the tests except
Wooldridge’s tests remain unchanged; Wooldridge’s tests become worse.

Tables III-V report power performances under DGP’s 2—-4. Under DGP 2,
misspecification of a linear model is “small” in the sense that the neglected
nonlinearity is uncorrelated with X,; the OLS estimator &, is consistent for a,.
Our tests and ES& J’s tests are powerful against DGP 2. NEW1 is a little more
powerful than NEW?2, i.e. the QT series performs better than the LT series,
although the rate of p, for the QT series is slower. BT1 and BT2 have some
power, but are much less powerful than our tests and those of ES&J. WT1,
YT1, and YT2 have little power against DGP2. WT?2 gains power when n = 500
and o,>=4. When o7 increases, the power of most tests suffers, but the

o

ranking of relative performances of all the tests remains unchanged.
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TABLE I

EMPIRICAL CRITICAL VALUES AT THE 5% LEVEL

o}

n:

1

4

300

500

100

300

500

NEW1
NEW2
BT1
BT2
ESJ1
ESJ2
WT1
WT2
YT1
YT2

1.02
1.25
1.96
2.09
1.09
1.24
1.88
1.95
1.70
1.89

1.13
133
1.96
222
1.23
1.34
1.82
2.03
1.75
1.96

1.15
137
1.97
2.28
1.14
1.35
1.83
2.04
1.80
2.04

1.02
1.25
1.96
2.09
1.09
1.24
2.08
221
1.70
1.89

1.13
133
1.96
2.22
1.23
1.34
2.00
2.37
1.75
1.96

1.15
137
1.97
2.28
1.14
1.35
2.04
2.42
1.80
2.04

NoTEs: (a) DGP: Y, =

X,a,+ &, where X, =

WX X))y ap= (L1, Xy =V, + V1)/2,

X, =WV, +Vy)/2, Vl,Vl,,Vz, are i.id. U[0, 21r], and &, is iid. N0, o 2).

(b) 5000 replications.

(c) n = sample size.

1147

Our tests and Bierens’ tests are powerful against DGP 3. Although our tests

are competitive with those of Bierens, they are less robust to increase in o’

2

The tests of ES&J are also powerful, but are a little less powerful than our
tests, in particular for small n and/or o,2=4. This seems to confirm the
theoretical expectation that our tests are more powerful than ES& J’s when we
combine low order polynomials with trigonometric series. WI'l and WT2 have
some power, but are less powerful than the preceding tests. WT2 is more
powerful than WT1. Yatchew’s tests are the least powerful. Again, all the tests

become less powerful when o,

2

TABLE II

increases.

REJECTION RATES (%) AT THE 5% ASYMPTOTIC AND EMPIRICAL LEVELS UNDER DGP 1

ol 100 300 500 100 300 500

n: acv ecv acv ecv acv ecv acv ecv acv ecv acv ecv
NEW1 1.6 51 20 48 20 47 16 5.1 20 48 20 47
NEW2 28 48 28 51 27 43 28 48 28 51 27 43
BT1 48 47 36 36 61 57 48 47 36 36 61 57
BT2 67 49 75 41 107 5S4 67 49 75 41 101 54
ESJ1 20 52 13 45 22 45 20 52 13 45 22 45
ESJ2 27 54 32 48 3.0 41 27 54 32 48 30 41
WT1 87 51 53 36 75 53 132 50 84 37 101 53
WT2 100 47 97 44 105 51 153 43 150 39 206 53
YT1 72 62 62 49 85 64 72 62 62 49 85 64
YT2 104 61 99 50 131 69 104 6.1 99 5.0 131 69

Notes: (a) DGP; Y, =X a, + &, where X,—(l X,,,Xz,) a,=(1,1,1), X, =WV, +V)/2, Xp, =V, +

V2:)/2, Vi, Vi, Vo, are ||d U[0,27], and &, is iid. N(O, a2).

(b) 1000 replications.

(c) acv = asymptotic critical value; ecv = empirical critical value.

(d) n = sample size.
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Interestingly, WT1 and WT2 are the only tests that have some power against
DGP 4. When o,? increases, they become slightly less powerful at the ECV. All

YONGMIAO HONG AND HALBERT WHITE

TABLE III
REJECTION RATES (%) AT THE 5% ASYMPTOTIC AND EMPIRICAL LEVELS UNDER DGP 2

1 4
ol 100 300 500 100 300 500

n: acv ecv acv ecv acv ecv acv ecv acv ecv acv ecv

NEW1 322 465 852 916 994 999 75 137 175 265 372 499
NEW2 281 368 751 815 962 979 86 124 120 195 286 351
BT1 123 121 316 316 493 487 69 69 99 99 169 16.6
BT2 160 105 428 313 428 313 82 64 168 99 271 174
ESJ1 305 438 834 889 986 995 7.0 123 172 245 372 487
ESJ2 264 362 729 791 958 976 80 11.7 139 194 273 355
WT1 93 62 57 28 101 53 133 49 78 30 81 59
WT2 93 47 99 41 206 53 148 37 162 42 826 703
YT1 99 86 113 93 197 144 81 74 172 60 97 79
YT2 142 84 180 104 275 142 110 66 112 58 156 7.8

Nortes: (a) DGP: Y, = X a, + 0.1(V}, — wXV,,— w) + ¢, where X,=(1, Xl,,Xz,) a,=(1,1,1), X, =

WV, + V1)/2, Xgy= (V4 V) /2, V., V1, Vo, are iid. U0,2), and &, is i.id. N(O, o 2).

(b) 1000 replications.
(c) acv = asymptotic critical value; ecv = empirical critical value.
(d) n = sample size.

other tests do not have power against this DGP.

To summarize our findings: (i) The sizes of our tests are conservative and
; so are ES&J’s tests. Bierens’ test has a reasonable size
when the penalty term is not chosen too small. The tests of Wooldridge and
Yatchew may overreject when the nonparametric estimator “overfits” the data.

robust to increase in o’

TABLE IV
REJECTION RATES (%) AT THE 5% ASYMPTOTIC AND EMPIRICAL LEVELS UNDER DGP 3

1 4

a? 100 300 500 100 300 500

n: acv ecv acv ecv acv ecv acv ecv acv ecv acv ecv

NEW1 79.6 869 99.9 100.0 100.0 1000 17.1 28.0 60.7 71.1 869 92.7
NEW2 73.0 80.2 99.9 100.0 100.0 100.0 149 214 506 59.5 86.0 922
BT1 87.9 879 100.0 100.0 1000 100.0 387 38.6 837 837 965 96.4
BT2 93.2 91.6 100.0 100.0 100.0 100.0 49.3 43.0 935 889 993 98.0
ESJ1 709 79.8 999 999 1000 1000 128 228 504 613 783 868
ESJ2 647 738 99.6 99.8 1000 1000 13.6 200 471 549 733 799
WT1 442 368 719 653 888 841 325 195 420 293 569 435
WT2 420 297 928 872 994 990 321 154 670 384 857 652
YT1 16.1 141 276 241 445 385 90 75 98 82 143 112
YT2 234 142 376 240 549 361 135 7.7 148 178 217 107

NoTEs: (a) DGP: Y, = X]a, + (X{a,)exp{—0.01(X}a,) "2} + &, where X, =0,Xy, 5,) a,=(1,1,1),

X, =W+ V)/2, Xoy= (Vi 4+ V3) /2, Vi, VY, Vo, are iid. Ul0,27), and &, is iid. N, o

(b) 1000 replications.
(c) acv = asymptotic critical value; ecv = empirical critical value.
(d) n = sample size.
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TABLE V
REJECTION RATES (%) AT THE 5% AsSYMPTOTIC AND EMPIRICAL LEVELS UNDER DGP 4

1 4
ol 100 300 500 100 300 500

n: acv ecv acv ecv acv ecv acv ecv acv ecv acv ecv

NEW1 16 54 22 S50 25 52 16 53 22 47 22 48
NEW2 31 54 26 52 31 48 28 50 26 53 27 47
BT1 44 48 46 46 79 78 48 48 41 41 68 64
BT2 65 51 94 47 129 71 66 49 89 37 115 5.6
ESJ1 21 53 20 46 26 51 20 53 19 46 23 438
ESJ2 27 57 30 53 34 49 27 54 29 50 31 43
WTl 313 19.8 381 308 50.8 409 308 141 387 223 527 320
WT2 386 229 653 436 855 679 383 148 662 270 857 468
YT1 75 65 62 50 85 62 75 63 60 49 85 64
YT2 102 62 99 52 133 69 103 62 98 50 130 6.9

NoTtEs: (a) DGP: Y, = (X/a,) %% + &,, where X, = (1,x1,,x2§)', a,=(1,1,1), X, =V, + V)/2, Xy, =
WV, + V,y)/2, V, V1,V are iid. Ul0,27], and &, is i.id. N(O, o).

(b) 1000 replications.

(c) acv = asymptotic critical value; ecv = empirical critical value.

(d) n = sample size.

(ii) Our tests are powerful in some cases. They are often a little more powerful
than ES&J’s tests, and much more powerful than Yatchew’s test. They are also
competitive with or more powerful than Bierens’s test. (iii) No one test domi-
nates the others in power. (iv) The powers of all the tests suffer from increase in
.2, as should be expected.

Because no one test dominates the others, we explore the extent to which
combining these tests can capture the best features of each. We use a simple
Bonferroni procedure, which gives an upper bound on the joint p-value of
several test statistics despite their possible dependence. Let P,,..., P, be the
ordered p-values corresponding to k test statistics, with P, being the smallest.
The Bonferroni procedure says to reject H, at level a if P, <a/k.

Table VI reports the rejection rates of some Bonferroni procedures with
various combinations of the above tests. We first consider a procedure combin-
ing all the tests. Bonferroni 1 combines NEW1, BT1, ESJ1, WT1, and YT1. The
reason for choosing BT1, WT1, and YT1 is to avoid possible overrejections. This
procedure has a reasonable size and is powerful against DGP’s 2-3. It has a
little power against DGP 4. Because Yatchew’s tests are always dominated by
some other test, we drop YT1 in obtaining Bonferroni 2, which now consists of
NEWI1, BT2, ESJ1, and WT1. There are some improvements in power, in
particular against DGP 4. Since NEW1 is slightly more powerful than ESJ1
against DGP’s 2-3, we drop ESJ1 in obtaining Bonferroni 3, which consists of
NEW]1, BT1, and WT1. There are again some improvements in power against
DGP 4, with reasonable size. We also report Bonferroni 4, consisting of BT1,
ESJ1, and WT1. It is slightly less powerful than Bonferroni 3. Of the four
procedures, we prefer Bonferroni 3.
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TABLE VI
REJECTION RATES (%) OF BONFERRONI PROCEDURES AT THE 5% ASYMPTOTIC LEVELS
o} 1 4
DGP n: 100 300 500 100 300 500
1 Bonferroni 1 4.0 3.1 5.1 5.1 3.6 6.1
Bonferroni 2 3.6 3.0 4.7 5.1 33 5.6
Bonferroni 3 4.6 32 6.1 6.1 4.4 73
Bonferroni 4 44 33 5.9 59 4.5 71
2 Bonferroni 1 26.3 79.8 98.3 7.8 15.6 339
' Bonferroni 2 273 81.1 98.5 83 16.6 347
Bonferroni 3 27.1 80.3 98.4 9.6 16.7 33.6
Bonferroni 4 25.0 76.2 97.6 9.1 16.2 320
3 Bonferroni 1 81.7 99.9 100.0 275 70.7 93.3
Bonferroni 2 82.5 99.9 100.0 29.2 73.4 94.0
Bonferroni 3 84.8 99.9 100.0 331 76.1 94.2
Bonferroni 4 81.8 99.9 100.0 319 74.4 93.7
4 Bonferroni 1 9.4 12.3 21.2 9.8 13.4 19.6
Bonferroni 2 10.5 14.3 239 10.5 14.9 232
Bonferroni 3 12.9 19.3 27.8 12.5 18.1 28.9
Bonferroni 4 12.9 19.3 27.7 12.6 18.1 28.8

NoTtEs: (a) Bonferroni 1 is a Bonferroni procedure consisting of NEW1, BT1, ESJ1, WT1, and YT1; Bonferroni 2
consists of NEW1, BT1, ESJ1, and WT1; Bonferroni 3 consists of EW1, BT1, and WT1; Bonferroni 4 consists of ESJ1,
BT1, and WT1.

(b) 1000 replications.

5. CONCLUSION AND DIRECTIONS FOR FURTHER RESEARCH

This paper proposes two consistent specification tests for nonlinear paramet-
ric models via nonparametric series regressions. The test statistics grow at a rate
faster than the parametric rate under misspecification, while avoiding weighting,
sample-splitting and non-nested testing procedures previously used in the litera-
ture. Our approach can be viewed as a nested testing complement to
Wooldridge’s (1992) non-nested testing approach. It permits more flexible non-
parametric estimation. Our results suggest possibly better size and better power
in finite samples, as confirmed by simulation experiments, which also compare
the relative performance of some related consistent tests. We examine a
Bonferroni procedure to capture the best features of several alternative tests.

While our results are stated under the homoskedasticity assumption, our
approach applies to heteroskedastic errors as well, with proper modification of
the test statistics (see Theorem A.3 in the Appendix). Furthermore, our treat-
ment of degenerate statistics is not restricted to regression contexts and to the
two statistics studied here. For example, because of its appealing intuitive
interpretation, relative entropy has been proposed and used to test certain
interesting nonparametric hypotheses (e.g. Robinson (1991)). Since the nonpara-
metric entropy estimator also vanishes faster than the parametric rate under the
null hypothesis, our approach can be used to derive a well-defined distribution,
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thus providing an alternative to the weighting device previously used in the
literature. See Hong and White (1995) and White and Hong (1995) for details.
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MATHEMATICAL APPENDIX

We first state and prove Theorems A.1-A.2. Theorems 3.1-3.4 then follow as corollaries of
Theorem A.2. Theorem A.3 treats heteroskedastic errors. First, we state the following conditions:

ASSUMPTION B.1: 6, ={8: 0(x) = L/, B,yj(x), B; €R and y;: R* - R} is such that
(@) W%, is nonsingular for all n sufficiently large a.s.;
(b) sup, ¢, (¥, )" "¢y, > 0 a.s;
(c) there exists a sequence {6 € 0,} such that p(8*,6,) =o0(pl/*/n'/?) under H,, and p(8},6,) =
o(1) under H,.

ASSUMPTION B.2: 62 is measurable such that 82 — a;** = 0p(p;'/?) under H,,, and 6} — g.}* =

0p(1) under H, for some c**,0<c<ag**<c V<o, n=12,....

THEOREM A.l: Suppose Assumptions A1-A.2 and B.l(a,b)-B2 hold. Define W, =
{Z, &, 9n XE, B} HZ, ¥y &). Let p, > as n — . Then W,/82 =pu)/2p,)"? S NO,D.

ProoF: Throughout this Appendix, we denote L, =XL" ;, LL, ., =Zr L), ZE o o, =
T T izl and TEEY, s =D, XY ;;ﬁz,’:ll. For notational simplicity and without
loss of generality, we set o2=1. Put ¢, =W¥,) "%y, A,=L,¢,¢ne?—p, and U, =
YL, < Uy, where Uy, = 2, ¢, 0, €, Then W, =p, + U, + A,,. We first show that p; /24, = 0p(1).
Given Assumptions A.1-A.2 and the identity ¥, ¢}, ¢,, = p,, we have E(A4,) =0 and

2
E(Ai) =E{ Z‘Prllt‘Pnl(etz - 1)}
t
=E{E Y (@ 0@ 0, )El(e? = D(2 = 1) IXl,...,X,,]}
t s
=EY (ehuon)E[ (7 = 1| Xy, X, | < E L (o)’
t t

sc_lanSup((p,'"(pn,).
t

Hence, p, '/%A, = 0p(1) by Chebyshev’s inequality given Assumption B.1(b). Therefore,

(A.D P2 W, = p,) =p; 72U, + 0p(D).
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We next consider U,. Because E(U,|Z,) = E(U,,,|Z,) =0 for ¢ #s, where Z, = (Y,, X;)', Lemma
2.1 of de Jong (1987) holds and we can use his CLT’s for generalized quadratic forms. By de Jong
(1987, Proposition 3.2), U,/S, % N(©0,1) if G;, G,;, and G,,, are o(S?), where S2 = EU?, and

GI = ZZEUn“Is? GII = ZZZ(EUAZISUnztk +EUnZ:lUnZsk +EUn2ktUn2ks)’ and
s<t k<s<t

GIV = ZZZZ(EUnikUnisUnlkUms + EUnikUnitUnskUnst + EUnisUnitUnk:Unkt)

i<k<s<t

=1/2 LY, 1Y EWUUU,Uyye)

i<k s<t

(cf. de Jong (1987, pp. 266~267)). We now verify these conditions. First, given Assumptions A.2(a)
(and g,2 =1), B.1(b), and the identity *, ¢,, ¢, = I,, we have

§2= Y Y EUL =4Y. Y El(¢), ) &2}

s<t s<t

= ZEZ(P,'“( Z ‘Pns‘P’lls) Pnt — ZEZ(‘P'IU q"nt)2
t s t

=2E Y = 2E X (ol )" = 2,{1 = Esup (1,00 } = 27, (1 + 0(D).
t t t

Next, we compute the orders of magnitude for G;, j=1, II, and IV. Given Assumptions A.1~A.2,
B.1(b), and the two identities for ¢,,, we have

2
G, =16E XY (g0, elef < 16c-25{ [ sup (@), @,)| LL («o;t%x)z}
t

s<t s<t

2
<16¢2E [supw:wm)] Y ¢t 0u b =0(p,);
t t

20 1 2 , 20 4 2
Gll = 16E< ZZZ((P:H(PnS) (40'11 qpnk) 8148.12813 + (¢ns ‘Pnt) (40": ¢nk) 8;‘8!2813
t<s<k

2¢ 2 - / 20 2
+(‘Prltk gpm) (¢nk QD,”) 81?81283} <48c IEZ }: Z(qpnt(Pns) (‘Pnt‘Pnk)
t sk

- ’ ’ ’ ’ - ’ 2
=48c IE}:@::(Z¢ns¢ns)4’nt¢m(}:‘Pnk‘onk)‘f’nts“'gc IZ(‘Pm‘Pnt) =0(p,);
t s k t

Gy =8E Y)Y 1Y (&) (@ 0ui N 0 0, (@) 1) 78767 67

i<k s<t

<2EY Y Y Y (0 @) @hs i) @ 00 @y Prid)
i kst

1

=2EY ¢l 3 (0 @) 2 (s @) X (0 ) @t =2, Gy i = 2P
t k s i t

Hence, G;/Si =o(p;") for j=1, 11 and O(p, ") for j=1IV. Hence, G;/S, -0 given p, > . It
follows from de Jong (1987, ProPosition 3.2) that U, /(2 ? )72 4 N(0,1). We then have (W, /6,2 -
)/ QP =W, = p)/@p)72 + (57 = DW,/Gp,)' /" = U, /@p,) /> + 0,(1) S N, 1)_given
(A.1) and Assumption B.2. Q.E.D.

THEOREM A.2: Suppose Assumptions A.1~A.4 and B.1-B.2 hold. Define M, and M, as in (2.1)
and (2.2). Let p, = ® as n — %, Then (i) under H,,, M, — M, ©> 0 and

M, > N(8,1) and M,- N(5,1),
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where &= Eg*(X)/V2 0.2, (ii) under H, and for any nonstochastic sequence {C,}, C, = o(n/p"/?),
P[M,>C,]>1 and P[M,>C,]-1.
PROOF: (i) Asymptotic normality: Put 6, = §,(X,), 6% = 6*(X,), 62 = 6,(X), £ =fu(X,, &),

fE=1.X,, af), and g, =g(X,). We first consider M,. Noting &,, = & —(f,, — 6°) and 6,, — 6} =
‘pr:t( ﬁn - ﬁ:) = ‘/’r:t( ¥, ‘/’n)_ lzt ‘l’nt{st - (0,,* - 910)}v we decompose

(A2) =0t Y By =) 80 =0~ Y (B, — 65)&,, + (6% — 62)8,, — (f,, — 67)8,,}
t t
~n( Zawi )™ T vnse
t t
(- e ) )™ (e
t t
17t Y G 03 fo = 00) +n 7 (8 =0 )6,—n 7 Y (6%~ 67)(f,—67)
t t t
—n Y (f - 60, +n Y (f - 67)
t t
=nTW, - A, — Ay + Ay — Ay — A+ Ayg, say,

where the first two terms come from n~'L,(4, — 6%)e,. We first show A,;=o0p(p}/?/n) for
1 <j < 6 and then use Theorem A.1. Given Assumptions A.1-A.2(a), we have

E(An1)=n‘2%2E{(2(0$— RN PRCE 9;»))}
t t
<o n 2 Y (6% - 62,
t

where the last inequality follows from the basic projection inequality (PD): (T,h, ), X, ¥,)"!
(T, h,) < T,h? for any measurable function k, = h(X,). It follows that A,, = Op(n=1/%(6*, 6,))
=0p(p,/*/n) by Chebyshev’s inequality and Assumption B.1(c). Given B.1(c), we also have
A3 =0p(n"1/%(6},9,)) = 0p(pL/* /n) by Chebyshev’s inequality. Next, noting f,, = 6° =f,, —f}
+(pl/*/n'/?)g, under H,, and using a two term Taylor expansion, we have

L LA MO L7
t
+ /28, = apy (n7! T = 0o ) (=)
t
+(py//nn= Y (6, - 68)s,,
t

where V,2f,, = V.2f,(X,, &,) with a different &, such that ||&, — || <|l&, — || appearing in each
row of V.2f,,. For the first term in (A.3), we have

A n - e - D - ow ) (L)
t t t
! Sota )™ (Zwntass)
t t

=0p(p(8*,6,) +n~1/2) =0,(pl/*/n1/?)
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by the Cauchy-Schwarz inequality (for the first term), Chebyshev’s inequality (for the second term),
the projection inequality (PI) and Assumption B.1(c). Similarly, for the last term of (A.3), we have

(A5) nt'Y (6, - 6%)g = 0p(p(6F,6,) +n=1/2) = 0,(pl/* /n'/?).
t
Finally, for the second term of (A.3), we have
A\V2
(n_lz(om_on*; ) (n_lzllvazfmllz)
t t

- 0l /)

1/2

(A.6) n Y (8, — 65V | <
t

given Assumptions A.1-A.3 and B.1(c). Combining (A.3)-(A.6), we have A, =o0p(pl/?/n).
Next, we consider the remaining terms. Given Assumptions A.3-A.4 and B.1(c),

ne= (G, —aX)n= 1Y (8% — 62V, f,, + (pY*n/DIn=1 Y (8% — 67)g,
t t

=op(p,/?/n)

by the Cauchy-Schwarz inequality, where V, f,, = V. f,(X,, &,), with a different &, appearing in each
row of V, f.,. Next, given Assumptions A.1-A.4, we have

Ars= @y an™ T O fie 4 /00, = @) (07 £ Ve (6= )
t t

+ (P;/A/”l/2 ! 23: &

t
=0p(n™1) + 0p(n™") + Op(p}/* /n) = Op(py/* /n)

by Chebyshev’s mequallty (for the first and last terms) and the Cauchy-Schwarz inequality (for the
second term), where V.2f,, = V.2f(X,, &,), with a different &, appearing in each row. Finally, we
have

Ape = n! Z(ﬁn _fr:kr)z + Z(Prlu/4/nl/2)"_l Z(f:n - fi)e(X,)
t t
+(pi/2/n)(n“ ng)
t

=0p(n~1) + 0p(pl/*/n) + (p}/?/n) Eg2(X){1 + 0p,(1)}
by Assumptions A.3-A.4 and the weak law of large numbers, where n~1L( f:,, —fi)r=(a,-
&Y (n 1LV, £V fu X G, — aX) = 0p(n~1). 1t follows from (A.2) that #1, = (p} /Z/n)Egz(X)+

n~ W, + op(pl/?/n). The desired result follows from Theorem A.1 by proper standardization.
We now treat M,. We decompose °

%) n=2n" IZ( ) — 0°)e,—n~ 1Z(O,,,—O ) —n'IZ(f,,, 67)e,
n! Z(fm - eto)z
t

A A 2
=2n"! Z(Om —67)e,—n"! E(OM —=07) —Ays+ A
t '
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For the first term of (A.7),

(A.8) nt Y (8, —07)e,=n"1Y. (8, — 6%)e, +n" 1 Y (8% —67)e, =n" W, — A, +As,.
t t t
For the second term of (A.7), after some manipulation, we can obtain
A9 n 1Y (G -00 =n Y (4, - 05 +n ' Y (6% - 69)°
t t t
+2n71 Y (6, - 6565 — 6°)
t
=n"'w, —n—l( P CHES 0,")¢,:,)(‘I',,"If,,)‘1( Y w65 - 0;’))
t t
+n7tY (6% - 6°)
t

=n"'W, +0,(p*(85.6,)) =n”'W, +0p(p,/*/n)

given Assumption B.1(c), where the last two terms are 0p(p}/2/n) by the projection inequality (PT)
and Markov’s inequality. Combining (A.7)—(A.9) and noting A, = (p}/2/n)Eg*(X) + op(pl/?/n)
and A,;=o0p(p,’*/n) for j+6, we obtain , =(p}/?/n)Eg*(X)+n"'W, +0p(p)/*/n). 1t fol-
lows that s, — 1, = 0p(pl/? /n). Therefore, we have M, — M, = 0p(1), and M, % N(5,1).

(i) Following the analogous reasoning of part (i), it can be shown that under H, 1, =n~"'L(fX
—0°)* +0p(1) = E(f}, — 6°)? + 0p(1) by the weak law of large numbers (e.g., Andrews (1988)) given
Assumptions A.1 and A.3(a). The proof for M,, is similar. Therefore, consistency follows. Q.E.D.

In proving Theorems 3.1-3.4, we repeatedly use the following two lemmas.

LEMMA A.1 (Uniform Strong Law for A, (¥,'¥,/n)): Define B(p,) = sup,(y;,4,,). Suppose p,
satisfies B(p,)/Apinl EW¥, /n)} <nP,0<B<1/2 andp, <n®,0<a<1-2pB. Then

P[B(p,)/Anin(EF, /n) > 2n* infinitely often (i.0.)] =0.
PrOOF: See Gallant and Souza (1991, Theorem 4).

LEMMA A.2: Define G2=n"1L"_,82. Let p,/n — 0. Then 6} — 0,2 = Op(n"'/?) under H,,, and

0
G2 — 0;¥% = 0p(1) under H, for some 0<c <o <c <o, n=1,2,....

PROOF: Write 62— o02=n"'T(e? - 0,?)—2n"'T,6(f,, — 0°) +n~'T(f,, — 6°)%. For the
first term, n~1L,(? — 0,2) = Op(n~1/2) by Chebyshev’s inequality and Assumptions A.1-A.2. Next,
we consider the two remaining terms. (i) Under H,,: in the proof of Theorem A.2 we have shown
that n~1T, &(fay = 07) = A5 = Op(pl/*/n) and n™'T(f,, — 6°)? =A,s = Op(pl/?/n). 1t follows
that 6,2 — 0,> = Op(n~1/2) given p,/n — 0. (i) Under H, it can be shown that n~'T,¢(f,, — 6°)
=0p(1) by the mean value expansion and Chebyshev’s inequality given Assumption A.3(b) and
n YL (f, — 620 =E{f (X, a¥) — 6,(X)} + 0p(1) by the law of large numbers given Assumptions
A.1 and A.3(a). The result follows immediately with ¢,* = g, + E{f,(X, ) — 6,(X))}*. Q.E.D.

PROOF OF THEOREM 3.1: We verify the conditions of Theorem A.2. (i) Assumptions A.1-A.4 are
imposed directly. Assumption B.2 holds given either §,>=n"'L,_ (Y, —f,,)? (by Lemma A.2) or
G2=(n—p,)~1Er_ (Y, - §,)? (the proof is deferred to the end). Next, we verify the key assump-
tion B.l;;Ve use Lemma A.1 to verify Assumption B.1(a, b). Given Assumption A.1 (p(x) = ¢ > 0 for
all x € X),

E{l//,»(X)ap,.(X))=fiam(x)ga,(x)p(x)dxzcjx./,,.(x)./,,(x)dx=cai,,
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where §; =1 and §;; =0 for i #j by orthonormality of {¢;}. Hence, E(¥,¥,/n) =n"1%, E(g,, 4,)
2cl, and Ay {E(W¥,/m}>c>0 for all n and p, Given p,=o(n'/?) and B(p,) <
pamax, ¢, {sup, e gl¢s(x)}*> =c'p, for the trigonometric series, we can set a=(1/3)— ¢ for
some arbitrary small £>0 and B=1/3 in Lemma A.1 such that a <1—2. It follows that the
conditions of Lemma A.1 hold for B(p,)/Ani (¥, ¥, /n) with B=1/3. As a result, Assumption
B.1(b) holds since sup, ¢,, (&%)~ ¢, <n~sup, (¥, )/ Amin(F ¥, /n) = 0(n"2/%) as. Assump-
tion B.1(a) also holds because A (%¥,)/(n'”#/p,) > as. and n'~#/p, — . Finally, given
6, € C'(X) is periodic (X is a subset containing X), we have p(6, 6,) = O(p, "/¢) as argued in the
text. Hence, B.1(c) holds given p:"+¢/n?? — o, 4r > 5d. Because the conditions of Theorem A.2(i)
are satisfied, asymptotic normality follows for both M, and M,.
It remains to show 6,2 = (n —p,)~ 'L (Y, — 6,,)* satisfies B.2. Put n’ =n —p,. Then

Grt—agt=n'"! 2(8,2 -g2)-2n'"! Ee,(é,,,— 6°)
t t
N 2
+n' "1 Y (8, - 6°) +(p,/n)al.
t

Given Assumptions A.1-A2, n' 'L (? — g,2) = 0p(n~1/2) by Chebyshev’s inequality. From the
proof of Theorem A.2, we have shown (cf. (A.8) and (A.9)) that n~' T, &,(8,, — 6°) = Op(p,/n) and
n~1T(8,, - 6°)? = Op(p,/n). It follows that 62— 0,2 =0p(n"1/?) under H,, and H, given
Assumption B.1(c) and p, =o(n!/3). (ii) Consistency follows immediately from Theorem A.2(ii).

Q.E.D.

PROOF OF THEOREM 3.2: (i) The only difference from Theorem 3.1 is that now A, {E(¥, ¥, /n)}
=0(p; ¢+ 4) for every positive integer s €N and any £>0 (see Gallant and Souza (1991,
Section 5)), so we only need verify Assumption B.1. Gallant and Souza show that for such a rapidly
decreasing sequence as Ay {E(W,¥, /n)} = O(p; ***7?) for any integer s > 0 and any &> 0, there
exists an equivalent characterization In(Ay; {E(¥/¥, /n)}) = —a(p)/ )in(pl/ ) for some function a
with lim, _, .a(p}/?)=o. It follows that a(p) “In(p,/¢)<pIn(n) for some B,0<B<1/2,
ensures B(p,)/Anid ECEW, /n)t <nP. Because a(pl/ Hin(p)/ ) < B In(n) implies that p, grows
slower than any fractional power of n (ie., n®/p, = «© for any a> 0), the condition p, <n® for
some a, 0 <a<1-—2B, also holds. Hence, the conditions of Lemma A.l hold for
B(p,)/ Amin(¥, ¥, /n). 1t follows that Assumption B.1(b) holds by Lemma A.1. Assumption B.1(a)
also holds because A, (¥ ¥,)/(n'~#/p,)—> = as. and n!~P/p, — . Since 6, is infinitely differ-
entiable, Assumption B.1(c) also holds for the choice of p,, following reasoning analogous to that of
Gallant and Souza (1991, Section 5). Therefore, all conditions of Theorem A.2 hold, and asymptotic
normality for M,, and M,, follows by Theorem A.2(i). (ii) Similar to Theorem 3.1(i). Q.E.D.

PROOF OF THEOREM 3.3: Given f(X,a)=X'a+ (pl/*/n'/?)g(X) and a €4, A a subset of
RY, Assumption A.3 holds. Put af = a* = E(XX')"'E(XY). Then Assumption A.4 also holds
because &, —a*=(n"'L, X, X;)"'n" 1L, X,Y, — a* = Op(n~!/2). We now verify B.1-B.2. (i) Given
0,(X)=X'a, and that 6, in either (3.3) or (3.4) contains the linear model, we have p(6},6,)=0
for all p, >d. Hence, Assumption B.1(c) holds under H,,. Given either (a) €, in (3.4) or (b) 6, in
(3.5) and their corresponding rates for A,; {E(¥,¥,/n)} (see the text), it follows that either (a)
Pn=0(n?/3@*+D) or (b) p, =o(n?/G2+D) suffices for Assumption B.1(b) by invoking Lemma A.1.
Assumption B.1(a) also holds. Next, Assumption B.2 holds also either given ;2 =n"'L(Y, —f,,)?
(by Lemma A.2) or 2 =(n—p,)" 'L (Y, - 6,)? (as shown the proof of Theorem 3.1). Asymptotic
normality follows from Theorem A.2(). (i) Since 6, is square integrable with respect to u, it is also
square integrable with respect to Lebesgue measure given Assumption A.1. It follows that Assump-
tion B.1(c) holds under H,. Consistency then follows from Theorem A.2(ii). Q.E.D.

PrROOF OF THEOREM 3.4: We have argued in the text that A (E(¥¥,/n)}=0(p,;!) and
sup, ¢ x (N/"(x)) <c for all j. The proof is similar to Theorem 3.1. Q.E.D.

In the following theorem, we show that our approach applies in the presence of heteroskedastic
errors. We make the following assumption on the error term:
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ASSUMPTION A.2': Suppose that e, = o(X,)u,, where P[O<1nf,{a(X )} <supfo(X,)} <w]=1
and {u,} is an ii.d. sequence with E(u,)= 0 E@w?)=1, and E(u}) <. Furthermore, {u,} is
independent of {X,}.

THEOREM A.3: Suppose that AssumpuonsA 1, A2, A3-A.4, and B.1 hold. Define M,, = (ni,, —
R .)/S, and M, —(nm —R 4)/S,, where i, and rm, are as in Theorem A.2, R, E,<p,,,¢m ER
$2=2%,% (<p,,,¢,,s) 82, ¢, =Wy )'l/zl//,,, and &,,=Y,~f,. Let p,—® as n— . Then (i)
under H,, M, ~ M, —oP(l) and

d ~ d
M, - N(0,1) and M, - N(0,1);
(ii) under H, and for any nonstochastic sequence {C,}, C, = o(n/p}/?),

P[M,>C,1>1 and P[M,>C,]—1.

ProoF: We give a proof for M, only. (i) Following an analogous reasoning of the proof of
Theorem A.2, we can obtain

(A10)  (nh, —R,)/p/?=(W,—R,)/pY*+0p(1) = U, /p}/? + 0p(1)

under H, given Assumptlons Al, A2, A3-A4, and B.1, where U, = ):):s<,2<p,,, @n1 €& and

Z,(p,,,(p,,,e,z Put R} —):,qo,,,qo,,,a',z, where 0',2—0' (X). Then p V4R, — R¥) =
'1/ 2):,<p,,,<p,.,(e,2 — 02) =0p(1) by Chebyshev's inequality and E(Y, ¢, 0 (e — a0 <
cET (@ 0,0} =0(p,,). It follows from (A.10) that

(n, —R¥)/S,=U,/S, +0p(1),

where S2 = 2%, Z(¢}, @,,)’00,> and hence cp, < S} <c”'p, as. given Assumption A.2". We now
show U, /S —>N(0 1). For this, we first show that conditional on X" = {X,,...,X,}, U,/S, % N(©,1)
and then apply the Dominated Convergence Theorem to prove the uncondltlonal normality. Since
EU, | X" u,)=EWU,|X";u,)=0 for t +s, we apply de Jong’s (1987) CLT to U,|X". (de Jong’s
result applles to mdependent but not necessarily identical distributions.) FlI‘St we compute
var(U,| X"):

var(U,| X") = Y Y EWUZIX") =4 Y Y (@) 0ns) 00,2 = S2 — ZZ‘,(%%) o

§<t s<t
=831 +0(1)},

where ¥,(¢), ¢,,)%0,* = o(p,) = 0(S?2). Following reasoning analogous to the proof of Theorem A.1,
we have G, =o(p,), G;; = o(p,), and G,,, = O(p,). It follows that G;/S, -0, j =1, 1I, and IV given
P, — . Therefore, we have (U,/S,)| X" % N(0,1) by de Jong’s (1987 Proposition 3.2). That is, the
conditional probability P[U, /S, < £|X"] converges to the probability that a unit normal is less than
£. Since the unconditional probability is the expectation of the conditional probability w1th respect
to the distribution of X", the Dominated Convergence Theorem implies that U, /S, 4 N(©,1)
unconditionally. It follows that (b, — R*) /S, 5 N(0,1) under H,.

To show M,, % N(0,1), it remains to show that p;1/2(R, — R ) op(1) and p; /(82 — §2) = 0,(1)
(the latter 1mp11es that p;1/%(S, - S,) = 0,(1)). Noting that &, = &, — (f,,— 6°), we have

Pn_l/z(Rn -R,) =Pn_1/2 Z‘P;u%:(erz - 0':2) _Pn_l/2 E‘Pr'nt%xer(fm -6
t t

+p, 12 Z @nt P (for — 67)
'

= Op(l)y

where the first term is 0p(1) by Chebyshev’s inequality gwen Assumption B.1(b); for the third term,
P ‘Pnt(fnt 6°) <p,'/? sup,{¢;, ¢, )L, (fnt 67)* = 0p(1) given B.1(b) and T (fnt 67y
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= 0p(1) under H,); for the second term, p; /2%, @, @, & f,, — 67) = 0p(1) by the Cauchy-Schwarz
inequality. Similarly, we can also show that

Pl S2 =S =p; ' Y Y (g @) (3L 8% — 0%0%) =0, (D).

t s

It follows that M, % N(0,1) under H,. (ii) Under H,, we have i, 5 E{6,(X) —f(X, «¥)}*. In
addition, it can be shown that cp, <S?<c~!p, with probability approaching 1. The consistency
then follows as in the proof of Theorem A.2(ii). Q.E.D.

REFERENCES

ANDREWs, D. W. K. (1988): Laws of Large Numbers for Dependent Non-identically Distributed
Random Variables,” Econometric Theory, 4, 458—467.

(1991): “Asymptotic Normality of Series Estimators for Nonparametric and Semjiparametric
Regression Models,” Econometrica, 59, 307-345.

BIERENS, H. J. (1982): “Consistent Model Specification Tests,” Journal of Econometrics, 20, 105-134.

(1990): “A Consistent Conditional Moment Test of Functional Forms,” Econometrica, 58,
1443-1458.

DE JoNng, P. (1987): “A Central Limit Theorem for Generalized Quadratic Forms,” Probability
Theory and Related Fields, 75, 261-277.

DE JONG, R. M., AND H. J. BIERENS (1991): “On the Limit Behavior of a Chi-square Type Test if the
Number of Conditional Moments Tested Approaches Infinity,” Free University, Department of
Econometrics Working Paper.

Epmunps, D. E., AND V. B. MoscateLLl (1977): “Fourier Approximation and Embeddings of
Sobolev Space,” Dissertationes Mathematicae. Warsaw: Polish Scientific Publishers.

EUBANK, R., AND S. SPECKMAN (1990): “Curve Fitting by Polynomial-Trigonometric Regression,”
Biometrika, 77, 1-9.

EUBANK, R., AND C. SPIEGELMAN (1990): “Testing the Goodness of Fit of a Linear Model via
Nonparametric Regression Techniques,” Journal of the American Statistical Association, 85,
387-392.

GALLANT, A. R. (1981): “Unbiased Determination of Production Technologies,” Journal of Econo-
metrics, 20, 285-323.

GALLANT, A. R., AND D. JORGENSON (1979): “Statistical Inference for a System of Simultaneous,
Nonlinear Implicit Equations in the Context of Instrumental Variables Estimation,” Journal of
Econometrics, 11, 275-302.

GALLANT, A. R., AND G. Souza (1991): “On the Asymptotic Normality of Fourier Flexible Form
Estimates,” Journal of Econometrics, 50, 329-353.

GALLANT, A. R., AND H. WHITE (1988): A Unified Theory of Estimation and Inference for Nonlinear
Dynamic Models. Oxford: Basil Blackwell.

GozaLo, P. (1993): “A Consistent Model Specification Test for Nonparametric Estimation of
Regression Function Models,” Econometric Theory, 9, 451-477.

HAUsSMAN, J. (1978): “Specification Tests in Econometrics,” Econometrica, 46, 1251-1272.

HoLLy, A. (1982): “A Remark on Hausman’s Specification Test,” Econometrica, 50, 749—759.
HoNG, Y., AND H. WHITE (1991): “Consistent Specification Testing Via Nonparametric Series
Regression,” University of California, San Diego, Department of Economics Discussion Paper.
(1995): “Consistent Nonparametric Entropy-Based Testing,” University of California, San

Diego, Department of Economics Discussion Paper.

JAYASURIYA, B. R. (1990): “Testing for Polynomial Regression Using Nonparametric Regression
Techniques,” Texas A&M University Department of Statistics Ph.D. Dissertation.

LEE, B.-J. (1988): “A Model Specification Test Against the Nonparametric Alternative,” Disserta-
tion, University of Wisconsin Department of Economics.

ROBINSON, P. M. (1991): “Consistent Nonparametric Entropy-based Testing,” Review of Economic
Studies, 58, 437-453.

SCHUMAKER, L. (1981): Spline Functions: Basic Theory. New York: John Wiley.

This content downloaded from 128.84.125.184 on Fri, 22 Nov 2013 14:19:25 PM
All use subject to JSTOR Terms and Conditions


http://www.jstor.org/page/info/about/policies/terms.jsp

CONSISTENT SPECIFICATION TESTING 1159

WHANG, YOON-JAE, AND D. W. K. ANDREWS (1993): “Tests of Specification for Parametric and
Semiparametric Models,” Journal of Econometrics, 57, 277-318.
WHITE, H., AND Y. HONG (1995): “m-Testing Using Finite and Infinite Dimensional Parameter
Estimators,” University of California, San Diego, Department of Economics Discussion Paper.
WHITE, H., AND M. STINCHCOMBE (1991): “Adaptive Efficient Weighted Least Squares with Depen-
dent Observations,” in Directions in Robust Statistics and Diagnostics, Part II, ed. by W. Stahel and
S. Weisberg. New York: Springer Verlag, pp. 337-364.
=+ WOOLDRIDGE, J. (1992): “A Test for Functional Form Against Nonparametric Alternatives,” Econo-
metric Theory, 8, 452—-475.
=+ YATCHEW, A. J. (1992): “Nonparametric Regression Tests Based on an Infinite Dimensional Least
Squares Procedure,” Econometric Theory, 8, 435-451.

This content downloaded from 128.84.125.184 on Fri, 22 Nov 2013 14:19:25 PM
All use subject to JSTOR Terms and Conditions


http://www.jstor.org/page/info/about/policies/terms.jsp

	Article Contents
	p. 1133
	p. 1134
	p. 1135
	p. 1136
	p. 1137
	p. 1138
	p. 1139
	p. 1140
	p. 1141
	p. 1142
	p. 1143
	p. 1144
	p. 1145
	p. 1146
	p. 1147
	p. 1148
	p. 1149
	p. 1150
	p. 1151
	p. 1152
	p. 1153
	p. 1154
	p. 1155
	p. 1156
	p. 1157
	p. 1158
	p. 1159

	Issue Table of Contents
	Econometrica, Vol. 63, No. 5 (Sep., 1995), pp. 1023-1254
	Front Matter
	Fully Modified Least Squares and Vector Autoregression [pp.  1023 - 1078]
	Second Order Approximation in the Partially Linear Regression Model [pp.  1079 - 1112]
	Regression with Nonstationary Volatility [pp.  1113 - 1132]
	Consistent Specification Testing Via Nonparametric Series Regression [pp.  1133 - 1159]
	Epistemic Conditions for Nash Equilibrium [pp.  1161 - 1180]
	An Evolutionary Approach to Pre-Play Communication [pp.  1181 - 1193]
	Decomposition and Characterization of Risk with a Continuum of Random Variables [pp.  1195 - 1224]
	Notes and Comments
	Revisiting the Sen Poverty Index [pp.  1225 - 1230]
	Optimal Investment Selection with a Multitude of Projects [pp.  1231 - 1240]
	A Cardinal Characterization of the Rubinstein-Safra-Thomson Axiomatic Bargaining Theory [pp.  1241 - 1249]

	Announcements [pp.  1251 - 1253]
	News Notes [p.  1254]
	Back Matter



